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Abstract—The aim of this project was to investigate the current
state of immersive web technologies including its possibilities,
limitations and potentials based on the implementation of an
actual case of application. The basic idea of the use-case was to
create a web app that allows the user to get additional virtual
content to a present billboard using AR technology. By pointing
the camera of the device at a billboard the application detects
the visible advertisement and shows matching content virtually
placed in relation to the actual billboard. The user is then also
able to interact with the shown content.

One of the key challenges was the implementation of the
markerless detection since current immersive web technologies
do not provide adequate functionality. The markerless detection
was realized using OpenCV and YOLO object detection models.

Finally the approach was tested on different web browsers
and platforms. Possible limitations of the used web technologies
and the approach implemented were evaluated. One main focus
of the evaluation lay in the latency of the object detection and
limitations due to restricted hardware performance on some
devices.

Index Terms—markerless-detection, web technologies, aug-
mented reality, yolo, tiny-yolo, object detection

Project files: https://gitlab.com/jokober/webxr-project

I. INTRODUCTION

In recent years hardware that enables Virtual Reality (VR)
and Augmented Reality (AR) applications became broadly
available and more affordable to consumers. Associated with
this progress several software development toolkits and frame-
works for different platforms have been published. Popular
examples are the Apple ARKit and the Google ARCore SDK.
Both offer extensive functionality for the development of
native VR and AR applications limited to their respective
mobile platforms (iOS/ Android). However there are several
efforts to enable AR and VR for web applications as a platform
independent approach.

Frameworks like AR.js, Three.js and A-Frame already offer
some functionality that can be utilized for the development of
immersive web applications. With the early specifications of
the WebVR API in 2014 and the superseding first WebXR
API specification in 2018 there are efforts by the Immersive

Web Working Group to consolidate uniform AR and VR API
specifications for the web. However in terms of performance
and functionality those approaches can not easily be compared
to the more mature native solutions enabled by toolkits like
ARCore and ARKit.

The aim of this project was to develop a more complex
immersive web application based on a real use-case. In the
implementation process the current state of immersive web
technology development including its possibilities, limitations
and potentials were investigated.

The basic idea of the use-case was to create a web
application that allows the user to point the camera of a
(mobile) device at a billboard. The application then detects
the advertisement and shows additional content in relation to
the position of it. The focus of the content enrichment were
the following two cases:

• Advertisers that want to give further information to their
target audience

• Users that want to do subvertising.1

Five different billboard advertisements from three different
advertisers were selected to test the approach. The application
should run on most web browsers and on different operating
systems like macOS, iOS, Windows, Linux and Android.

II. TECHNOLOGIES

This paper bases on different technologies and frameworks
to enable 3D rendering, displaying AR content and apply
object detection using pre trained deep learning models. All
used frameworks will be described briefly below.

A. A-Frame

Based on the information of the projects homepage, A-
Frame is a JavaScript framework that is developed by Mozilla
[1]. It allows the representation of 3D-objects in the web
browser. It rest upon the 3D framework Three.js and is popular
in the area of virtual reality web applications. 3D environments
are defined over basic html elements. The anchor for all 3D

1https://en.wikipedia.org/wiki/Subvertising

https://gitlab.com/jokober/webxr-project


content is a so-called a-scene. It defines the three dimensional
room. In this room, it is possible to place different elements
like 3D boxes, cylinders, videos e.g.. Using plugins like
htmlembed the scene can be extended with the ability to render
html content.

B. Darknet

Darknet is a popular open source neural network framework.
It is written in C und CUDA and allows CPU and GPU
computation. Darknet is used to train YOLO models [2].

C. YOLO and Tiny-YOLO

YOLO stands for You Only Look Once and is developed
by J. Redmon and A. Farhadi [3]. It applies a single neural
network to an image. The image is divided in multiple tiles.
For each tile bounding boxes and probabilities are getting
predicted.

In recent years there have been several revisions of YOLO
including optimizations in model size, performance and ac-
curacy. With Tiny-YOLO there is a variation of the YOLO
architecture available that is less accurate but considerably
smaller and faster. According to Redmon et al. Tiny-YOLO
can achieve up to 244 frames per second on a single CUDA
GPU [3]. Hence it is particularly applicable for applications
where a high frame rate is required or for hardware with less
performance.

Fig. 1. Comparison of the performance of different object detection models
on the COCO dataset [3]

D. OpenCV and opencv.js

OpenCV is a famous computer vision and machine learning
library. It is open source and written natively in C++. There
are several interfaces for C++, Python, Java and MATLAB
[4]. With opencv.js there is a JavaScript binding that supports
a subset of OpenCV functions. It is based on OpenCV 3.1.0.
and leverages asm.js and WebAssembly [5], [6].

III. RELATED WORK

As pointed out in the introduction there are two popular
native toolkits for the mobile platforms iOS and Android.
Both offer object detection and object tracking functionality.
There are different projects und applications using those native
technologies for applications similar to the described use-case

[7]. However those are only targeting native platforms and are
not running in web browsers.

In comparison there are only a few projects with the aim to
run markerless immersive web applications with custom object
detection. Some projects like AR.js leverage simple detection
to enable marker-based recognition and positioning [8]. At
the same time the number of frameworks and projects based
on simple immersive web and WebXR technologies without
object detection functionality is increasing. Some of the most
popular ones are AR.js, Three.js and A-Frame.

Mozilla is one of the biggest driving forces for new
immersive web technologies. They have not only created
the A-Frame framework but are also pushing the WebXR
API specification. In 2018 Mozilla Research Scientist Blair
MacIntyre published a blog article called “Experimenting with
Computer Vision in WebXR” [6] in which he describes his
feasibility demonstration of computer vision on the web and
also in the experimental WebXR polyfill environment [9].

In his article McIntyre mentions latency issues due to
the lack of a video access feature in the MediaStream API.
Furthermore he compares performance of the web and the ex-
perimental WebXR polyfill solution and latency issues due to
asynchronously running opencv.js computer vision processing.

With JeelizAR there is one project which targets the same
objective like this paper. JeelizAR is a JavaScript library that
wants to bring real-time computer vision to developers. The
library leverages a deep learning engine running on the GPU
with WebGL. They claim to be able to do real-time face- and
object detection as well as expression recognition.

The creators provide a few neural network models for object
detection. However the range of available classes is very
limited. Training of custom models is only available as a paid
service [10]. As a demo they provide a web application which
is showing an animated pot pouring coffee in a detected cup.
While testing the detection of the cup was not reliable and the
position did not update fast enough when moving the camera
or the object leading to coffee being poured on the table (see
figure 2). However the library offers interesting functionality
for the implementation of immersive web applications running
object detection on the actual device.

Fig. 2. JeelizAR demo web application running on Android



IV. APPROACH

The approach of the authors, documented in this paper, can
be divided into two phases. In the first phase the image data
of the camera is used to detect and categorize possible visible
billboard advertisements. Subsequently the information of the
detection phase will be used to position the AR data and
provide it to the user. Both phases will be examined in the
following sections.

A. Advertisement Detection

To recognize billboards and their position a supervised
learning algorithm was chosen. Hence it is essential to train
a model based on a labeled dataset in advance. Subsequently
this model is used to determine the corresponding content for
the visible billboard.

1) Training of the object detection model: For the training
and validation dataset pictures of five relevant billboards from
different locations were taken. Some of those images contained
multiple target advertisements. With around 100 images the
dataset was relatively small. Each image was labeled with the
corresponding bounding boxes and names of the respective
billboards. Since latency was crucial for the project the faster
Tiny-YOLO model instead of the slower YOLO model was
trained. Intensive drawbacks in accuracy were not expected
because advertisements are relatively easy to detect because of
their distinct composition. The Tiny-YOLO model was trained
on the CPU using darknet.

Fig. 3. Training loss-chart of the Tiny-YOLO model training on advertisement
images

First tests of the trained model on single images were
promising. All billboards were detected with confidences over
90%. The results of the detection on a test picture containing
three different billboards are shown in figure 4.

Fig. 4. Prediction result of the trained model on an image with three
advertisements

2) Image Detection: The latency of the prediction is a
major key-factor of the approach. Since computational power
is significant for fast object prediction and due to the fact
that the application should run on slower mobile devices,
running the detection on the user’s phone was not an option.
Performance would be too slow on some devices and more-
over the YOLO predictions do not run in the web browser.
Therefore a server-side object detection architecture was used.
This approach facilitates the use of faster hardware for the
detection. In addition the application can run on devices with
less performance.

If the user starts the web application a frame of the current
visible camera stream will be sent to the server in regular
intervals.

On the server side a Flask web server was implemented
which receives images over HTTP PUT requests over TCP.
The server runs the detection on each image and filters
out all detections which are below the confidence threshold
of 80%. Afterwards the OpenCV non-maximum suppression
algorithm is used to consolidate all bounding boxes found for
the same detected object to a single bounding box for each
advertisement.

The detection information of those bounding boxes are
then put into a JSON formatted response (see figure 5). The
JSON contains the most important predictions including the
labels, confidences and the bounding box coordinates. The
response is sent back to the client where it will be used to
load corresponding content and position it according to the
bounding boxes detected.

B. Display Content

At that point it has been shown how advertisements are
identified by the server. In this section it will be described
how the user gets further information to an advertisement.
This process of providing the consumer with added details to
an advertisement can be structured in three phases.

The content provider has to define which information should
be available as additional virtual content in advance. When
the user points his device at a billboard the content must
be loaded from the server. Finally the information must be
provided to the user in an appropriate way. To achieve this



1 [{
2 "label": "amnesty",
3 "confidence": 0.9999868869781494,
4 "position": {
5 "x": 0.086,
6 "y": 0.391},
7 "size": {
8 "width": 0.2285,
9 "height": 0.27125}

10 },
11 {
12 "label": "aussenwerbung",
13 "confidence": 0.999350368976593,
14 "position": {
15 "x": 0.5676666666666667,
16 "y": 0.46},
17 "size": {
18 "width": 0.2705,
19 "height": 0.29375}
20 }]

Fig. 5. Server response containg prediction results

matter augmented reality seems to be the most user-friendly
way. Meaning that the virtual interface creates the illusion
that the additional content sticks right to the real content of
the actual billboard. A two-layer architecture was chosen to
reach that requirement, which consist out of the camera image
as the lowest layer. On top of that a 2D transformation of a
3D room is placed using A-Frame, which allows displaying a
variety of different content types like 3D-objects, videos e.g..

1) Two-Layer Architecture: As already mentioned a two-
layer architecture is the basis of the AR experience. Therefore
it is essential how the two layers are composite and positioned.
Given the A-Frame as a 3D room and the camera image as
a 2D plane. The idea is to define the virtual 3D room in a
way that a plane at the position vector (0, 0, 0) with the width
and height of 1 overlaps exactly the 2D device camera layer.
Therefore the virtual 3D camera is placed on the position (0 , 0,
-1) looking to the origin (0, 0, 0). The aspect ratio of the virtual
3D camera is defined as the aspect ratio of the device camera
aspect ratio. With this definition every object can be placed in
front of the device camera image using relative positioning.
The described composition is illustrated in fig. 6.

Fig. 6. Two-Layer Architecture

2) Content: The description and delivery of additional
content is a crucial part for the quality of the solution. At

first people are confronted with advertisements in an outside
environment. Therefore most people using their phones in
mobile networks like 3G or 4G and often have limited monthly
bandwidth conditions. Combined with a real-world scenario
where many different advertisements with partly big file sizes
are available, there must be a focus on just loading the needed
content and describing it in a dynamic but low bit-cost way.
Supplementary it is important that the system is not restricted
to specific content types and content providers are able to
define the content in an easy way.

3) Data structure: To avoid the huge overhead to load the
complete content of all available billboards at once, a list of
available advertisements is divided from the actual content.
This list (formatted as a json file) contains an identifier for all
available billboards and a reference to the additional virtual
content. If an advertisement has been detected the linked
content json file will be loaded. It describes the additional
data that should be displayed (see figure 7).

This content descriptor comprises a name attribute that
specify the content provider campaign. A further attribute
views is given as a list of virtual advertisement layers. An
advertisement can consists of different views but just one
view will be visible coincidently. At the moment of loading
the advertisement content, the first available view will be
displayed on the billboard. All other views are hidden and
can be shown by a so-called change view action.

1 {
2 "name" : "campaign name",
3 "views" :[
4 {
5 "title" : "main view",
6 "widgets":[]
7 },
8 {
9 "title" : "details view",

10 "widgets":[]
11 }
12 ]
13 }

Fig. 7. Virtual advertisement content

Each view is defined by a list of widgets, that describes the
actual visible content. A widget can be a video, a button, html
code, a 3D model, a menu or text. But it is also possible to
create new widgets that represent other functionalities like a
voting tool. Each widget is defined by a type, position, the size
and other additional attributes like video source and autoplay
of a video widget. The position and size is described relatively
to the actual visible billboard. That means that a widget of type
video with given x and y position of 0 and a width a height of
1 results in a billboard filling video. An example of a widget
description is shown in figure 8.

4) User Interactions: Displaying additional digital content
to the offline advertisements brings added value to campaigns.
However the content without the ability to interact with it has
a static nature. Providing the user the possibility to control
the displayed content enhances the experience. To achieve
this, a multi-page content architecture was designed. This



1 {
2 "type" : "button",
3 "position" : {
4 "x" : 0,
5 "y" : 0.8
6 },
7 "size" : {
8 "width" :0.5,
9 "height" :0.2},

10 "background" : "#e0e0e0ee",
11 "title" : "details",
12 "icon" : "data/images/chat.svg",
13 "action" : {
14 "type" : "change_view",
15 "value" : "details"
16 }
17 }

Fig. 8. Widget example

infrastructure was already introduced in the previous section.
With it the content provider gets a way to specify different
content views and define transitions between it using change
view actions. These actions are mainly triggered by touch
gestures on widgets of the view. The touch gestures are
recorded by an A-Frame raycaster. The following predefined
actions can be executed by touching a button widget:

• open web link
• change view
5) Loading data: As already described in the section “data

structure”, the real content of the billboards is divided from the
list of available billboards to avoid loading unnecessary data.
That results in less bandwidth use and a better performance.
This concept of lazy loading data is an essential key-factor to
enhanced performance. However not only the billboard content
is affected by this improvement. Enabled by the abstraction
of content types it was possible to load the required content
type descriptions (widgets) on-demand. To also not reload
images and videos of an already detected advertisement on
a new recognition the resources are cached and stored using
an unique identifier.

V. EVALUATION AND DISCUSSION

The implemented approach allows the virtual enrichment of
billboards using web technologies. Web technologies allows
the theoretically possibility to reach every device that can
interpret javascript. However there are different supported
versions of javascript depending on the used web browser.
Below it should be evaluated which browser supports the used
frameworks. Keeping in mind that the major scenario is the
using of the approach in mobile conditions, the bandwidth
of the application and the latency should be particularly
considered.

A. Supported platforms

The implementation was tested on different devices and web
browsers. While the client-side object tracking brought trouble
on different browsers except chrome the main features of A-
Frame were supported on many tested platforms and browsers.
Since the detection was outsourced to a server this approach is

fairly supported on all modern devices and browsers. However
since A-Frame based on Three.js there are minimum require-
ments. The browser has to support WebGL [11]. Additionally
the fetching of the camera image using the MediaStream
API has minimal browser version requirements. The minimal
browser versions for the used features are illustrated below in
table I.

TABLE I
MINIMAL REQUIREMENTS

Feature Chrome Firefox Opera Safari IE Edge
WebGL 56+ 51+ 43+ - - 79+

MediaStream 14+ 15+ 66+ 13+ - 18+
all 56+ 51+ 66+ - - 79+

Source: https://caniuse.com/

B. Latency

In the implementation phase latency was identified as a
crucial requirement for the application. Especially at the point
of perceived usability the performance could be pivotal. If the
camera of the device is not moving that fast the impression
of a fluent interface can be kept although a reduced content
position update frequency is present.

Overall latency in our approach is impacted by several
factors including MediaStream API limitations, network lim-
itation and performance of the object detection itself. Below
the mentioned factors are particularly exemplified.

1) MediaStream API Limitations: To retrieve a single video
frame from the MediaStream it is necessary to attach the
media device to a DOM video element and afterwards it is
rendered from the video element into a canvas element. The
image is then extracted from the canvas. This procedure is
computationally expensive and results in increased latency.
This limitation of the MediaStream API is a limitation which
affects a lot of applications connected to computer vision.

However there is a MediaStream Image Capture draft pro-
posal which purpose is to more efficient, allowing developers
to directly retrieve an ImageBitmap from a video stream using
the grabFrame() method. It is currently only implemented in
Chrome and hence was not used in this project.

2) Network Limitations: With the selected server-side-
detection architecture better hardware performance can be
used as running it on the client side. However at the same time
the application becomes more susceptible to limited network
bandwidth and latency. Table 1 shows how different network
conditions can affect the overall performance.

The usage of networks slower than 4G will reduce the
update frequency drastically. The tests have shown that on 3G
networks the time between the request being sent by the client
and the reception of the answer will be around 20 seconds.

However in future improvements of the application a new
approach using WebRTC and UDP instead of an HTTP over
TCP web server could provide promising improvements re-
garding network latency. Moreover with the upcoming spread



TABLE II
LATENCY TESTS

Bandwidth Bandwidth Test Resultsa
Throttling Sending Waiting Receiving

2G 240 000 ms 120 000 ms 0 ms
3G 15 000 ms 5 000 ms 0 ms

4G / LTE 600 ms 70 ms 0 ms
DSL 0ms 36 ms 0 ms

a Tested with Server running the Tiny-YOLO detection in
OpenCV on AMD Ryzen™ 7 3700X CPU.

of 5G in many countries the mobile network conditions will
be improved noticeably.

3) Detection Speed: As shown in figure 1 detection perfor-
mance highly depends on the selected object detection model.
As it has been mentioned above the Tiny-YOLO model has
been selected which is notably faster than other models. A
drawback in accuracy was not perceivable.

Nevertheless there are possibilities to further improve detec-
tion speed drastically by using hardware which utilizes GPU
computation for image detection. The impact of hardware per-
formance was already noticeable when using different CPUs.
On a 2.5 GHz Quad-Core Intel Core i7 notebook CPU running
the detection in a low frequency of one FPS took around 0.03
seconds per image which is equivalent to 30 FPS. However
running detection more frequently with 10 FPS resulted in
a drastically reduced detection speed of 0.5 seconds which is
equivalent to only 2 FPS. In comparison the creators of YOLO,
Redmon et al., managed to achieve 244 FPS on a Pascal Titan
X GPU [3]. Unfortunately the approach could not be tested to
run on hardware with a CUDA GPU. Doing further tests on
such hardware would be promising.

C. Object Tracking

Another promising improvement of the current approach
could be to use a combination of server-side object detection
and client-side object tracking. The advertisements would be
detected by the server and the resulting border box information
could be used to initialize a tracking algorithm running on the
users device. This procedure would allow to increase the posi-
tioning frequency and reduce the bandwidth requirements sig-
nificantly. However the opencv.js implementation of OpenCV
is still missing some important tracking algorithms known
from OpenCV. With the further development of opencv.js
and better usage of WebAssembly the application could be
improved noticeably.

VI. CONCLUSION

This paper stated how web technologies, object detection
and augmented reality can be used to implement a markerless
detection and enrichment of advertisements with additional
information. The benefit of this approach is a platform in-
dependent, installation-free and fast recognition. It has been
shown how a server-side detection approach enables deep
neural network object detection for web applications even on

devices with less performance. In combination with the A-
Frame framework the advertisement can be virtually extended
with data like video, 3D-objects e.g.. Therefore a bandwidth
saving, highly customizable and abstracted way of defining the
advertisement content was developed. Additionally touching
actions were implemented to allow the navigation of the virtual
content.

Testing the approach made different critical issues visible.
For providing the user a fluent experience the accurate and fast
detection and positioning of the content is essential. While the
server-side detection architecture has many benefits there are
some limitations that arise due to increased latency issues.

As a possible solution a hybrid approach might be promis-
ing. This would include less frequent object detections on the
server side combined with more frequent client side object
tracking for content positioning. Latency problems of the
server-side detection architecture could be improved by this
approach.

Apart from this it could be shown that web technologies
qualify for the described use-case of markerless advertisement
content enrichment. However in comparison to native frame-
works, immersive web technologies are still very limited in
regards of functionality and performance. Further development
and enhancement of web technologies are necessary to enable
the development of real use-case applications.
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